Отклонения от теории отталкивания электронных пар. Теория отталкивания электронных пар валентного уровня. Тип гибридизации центрального атома А

Подписаться
Вступай в сообщество «semeinyi31.ru»!
ВКонтакте:

Для построения энергетической диаграммы МО многоатомной молекулы необходимо заранее знать ее геометрическое строение. Обычно оно устанавливается экспериментально, но во многих случаях его можно очень просто предсказать. Такую возможность дает метод отталкивания электронных пар валентной оболочки, предложенный в 1957 г. Р. Гиллеспи.

В основе метода Гиллеспи лежит представление о том, что электроны или что более правильно, области повышенной электронной плотности в валентном окружении центрального атома должны располагаться в пространстве так, чтобы их взаимное отталкивание было наименьшим. Как нам известно, такие области соответствуют либо ковалентным связям, образуемым этим атомом, либо его неподеленным электронным парам. Поэтому можно сказать, что для ослабления межэлектронного отталкивания связи и неподеленные пары центрального атома должны располагаться на максимально возможном удалении друг от друга.

Конфигурации, обеспечивающие наименьшее взаимное отталкивание двух, трех, четырех, пяти и шести областей повышенной электронной плотности: 2-линейная, 3-равносторонний тругольник, 4-тетраэдр, 5-тригональная бипирамида, 6-октаэдр.

Например, в молекуле гидрида бора ВН3, наименьшее отталкивание трех областей повышенной электронной плотности, соответствующих связям В-Н, достигается при условии, что эти связи направлены к вершинам правильного треугольника.

В молекуле метана СН4 наименьшее отталкивание четырех областей повышенной электронной плотности (связей С-Н) достигается при их тетраэдрическом расположении вокруг центрального атома углерода. Следовательно, эта молекула должна иметь форму тетраэдра с направленными к его вершинам связями С-Н. Атом азота в молекуле аммиака NH3 окружают четыре области повышенной электронной плотности. Три из них соответствуют связям N-H и одна - неподеленной электронной паре. Как и в предыдущем примере, они должны быть направлены к вершинам тетраэдра. Однако ту вершину, которая занята неподеленной электронной парой, мы "не видим". Поэтому молекула аммиака имеет форму тригональной (т. е. треугольной) пирамиды с атомом азота в ее вершине и тремя атомами водорода - в основании.

Еще один пример - молекула диоксида углерода СО2. В ней имеются две двойные связи С=0 и, соответственно, две области повышенной электронной

плотности, каждая из которых образуется за счет двух электронных пар. Очевидно, что наименьшее их отталкивание достигается при линейном строении молекулы.

Теперь сформулируем порядок определения геометрии молекулы методом Гиллеспи.

Сначала определяют число областей повышенной электронной плотности (п) в окружении центрального атома. Для этого подсчитывают число образуемых им связей, как одинарных, так и кратных, и число имеющихся у него неподеленных электронных.

Затем выбирают соответствующую числу п фигуру или многогранник. В центр этой фигуры или многогранника помещают центральный атом.

Наконец мысленно удаляют у многогранника или фигуры те вершины, которые соответствуют неподеленным электронным парам, и получают наблюдаемую форму молекулы.

Рассмотрим еще несколько примеров.

В молекуле фосгена COCI2 атом углерода образует двойную связь с атомом кислорода и две одинарные - с атомами хлора. Так как неподеленных электронных пар у атома углерода в этой молекуле нет, число п равно трем и молекула имеет форму треугольника.

В нитрит-анионе NO2- атом азота образует связи с двумя атомами кислорода: на одну он расходует два своих валентных электронов, а на другую - один. У атома азота остается также неподеленная электронная пара, которая вместе с двумя связями образует три области повышенной электронной плотности, направленные к вершинам треугольника. В одной из них - неподеленная пара, не учитываемая при описании взаимного расположения атомов. Поэтому анион NO2- имеет угловую форму с валентным углом между связями N-O близким к 120 градусам. Вокруг центрального атома хлора в хлорат-анионе СlO3- располагаются три области электронной плотности, соответствующие трем связям С1-0, и одна неподеленная электронная пара. Поэтому этот ион имеет строение тригональной пирамиды, аналогичное строению аммиака.

Молекула пентахдорида фосфора PCI5 имеет форму тригональной бипирамиды, которую образуют пять связей P-CI.

Наилучшие результаты метод Гиллеспи дает при предсказании строения соединений непереходных элементов. Однако даже для них выполненные с его использованием прогнозы иногда оказываются ошибочными, хотя число таких ошибочных прогнозов и невелико. Например, молекула BaF2 по прогнозу должна иметь линейное строение, тогда как экспериментально определенный валентный угол в этой молекуле равен 100 градусов. Напротив, линейная молекула Li2О прогнозируется методом Гиллесии как угловая.

Геометрия многоатомных молекул определяет их полярность. Молекулы, имеющие форму правильной геометрической фигуры или правильного многогранника, всегда являются неполярными. Это связано с тем, что все смешения электронной плотности на каждой связи в сторону более электроотрицательного элемента компенсируют друг друга. Так, например, молекула PCI5 имеет форму правильного многогранника - тригональной бипирамиды и поэтому неполярна.

Если же молекула имеет форму неправильного многогранника или в правильном искажены некоторые углы, то она оказывается полярной. Например, связи P-Cl в трихлориде фосфора образуют тригональную пирамиду с атомом фосфора в вершине (неправильный многогранник), поэтому молекула PCI3 имеет дипольный момент.

Ван-дер-ваальсовы силы

(Очевиден механизм образования в-в с атомной или ионной связью: образование молекулярных орбиталей, приводящее к понижению потенциальной энергии с-мы в результате перехода электронов на более низко лежащие энергетические уровни, а также перераспределение электронной плотности, обусловливающее электростатическое притяжение между ионами.)

Однако возможно электростатическое притяжение и между нейтральными молекулами, вызванное силами Ван-дер-Ваальса.

1)ориентационное взаимодействие осуществляется между полярными молекулами, которые ориентируются так, чтобы сблизиться разноименными полюсами, результатом чего является притяжение между ними и понижение потенциальной энергии с-мы при их сближении-соединении

2)индукционное взаимодействие.если молекула не имеет постоянного дипольного момента, то он может в ней возникнуть, индуцироваться(наводиться) под воздействием другой, полярной, молекулы.

3)дисперсионное взаимодействие. В любой молекуле из-за того, что она представляет собой с-му с движущимися зарядами (ядрами, электронами), непрерывно возникают, перемещаются и исчезают так называемые мгновенные микродиполи. При сближении молекул их возникновение перестает быть полностью случайным, независимым; появляется некая согласованность в их образовании.

Таким образом, ванн-дер-ваальсовы обусловлены корреляцией(согласованием) движения электронов в соседних молекулах вследствие кулоновского взаимодействия. Они очень быстро ослабевают с увеличением расстояния между молекулами.относительный вклад каждого типа таких сил зависит в основном от 2-х св-в молекул: полярности(величины дипольного момента) и поляризуемости (способности к более или менее легкому изменению относительного ространственного распределения зарядов внутри молекулы.)

46. Зонное строение твердого тела. Образование энергетических зон в кристаллах простых веществ и в со-единениях с ионным типом связи.

До сих пор мы рассматривали образование химической связи в молекулах, образованных из нескольких атомов. Однако немало веществ состоит не из молекул, а непосредственно из атомов или ионов. Химическую связь в кристаллах таких веществ описывают с помощью зонной теории, которая является развитием метода МО и рассматривает кристалл как одну очень большую молекулу.

///Атомные кристаллы

Представим себе, как образуется кристалл из атомов щелочного металла, каждый из которых имеет только одну валентную s-орбиталь и один электрон на этой орбитали. При соединении двух таких атомов образуются две молекулярные орбитали: связывающая, энергия которой меньше энергии исходных АО, и разрыхляющая, с более высокой энергией. Если соединяются три атома, то образуются три МО, если четыре - то четыре МО и т.д. В кристалле, состоящем из 1 моль атомов, должно образоваться 6,022*10 орбиталей.

Видно, что в молекуле, состоящей из небольшого числа атомов, для перехода электрона на свободную орбиталь требуется довольно большая энергия. По мере того как число взаимодействующих атомов увеличивается, различие в энергиях МО становится все меньше, а при очень большом числе атомов можно сказать, что орбитали образуют практически непрерывную энергетическую зону. В соответствии с принципом наименьшей энергии электроны попарно занимают орбитали нижней половины зоны, оставив верхнюю половину свободной. Электроны, находящиеся в заполненной части зоны, при малейшем возбуждении могут переходить свободные орбитали с более высокой энергией. Вещества с частично заполненной электронами энергетической зоной хорошо проводят электрический ток, т.е. обладают высокой электропроводностью, и называются металлами.

Теперь рассмотрим более сложную ситуацию, возникающую в тех случаях, когда атом имеет несколько валентных орбиталей, как, например, атом углерода (2s и 2р) или алюминия (Зs и Зр). В зависимости от свойств соединяющихся атомов, и от типа образуемой ими кристаллической решетки, образующиеся МО кристалла могут слиться в единую энергетическую зону, а могут сформировать несколько отдельных зон.

При образовании кристалла из N атомов алюминия возникает едина зона, состоящая из 4N орбиталей, из которых 3/2N заполнены электронами, а остальные свободны. Поэтому алюминий является металлом с высокой электропроводностью.

Иную зонную структуру имеет кристалл алмаза. При соединении N атомов углерода образуются две зоны, каждая из которых состоит из 2N орбиталей. Так как у атома углерода есть четыре валентных электрона, легко подсчитать, что все уровни зоны, лежащей на энергетической диаграмме в области более низких энергий, полностью заполнены, а все уровни верхней зоны - свободны. Зона, занятая электронами, называется валентной зоной, а свободная - зоной проводимости. Между валентной зоной и зоной проводимости имеется так называемая запрещенная зона, в которой для электронов нет разрешенных энергетических стояний (т.е. МО). Поэтому для того чтобы приобрести подвижность электрон должен получить дополнительную энергию, превышающую «ширину» запрещенной зоны. В кристалле алмаза, например, эта «ширина» довольно велика и составляет примерно 5,5 эВ, поэтому алмаз является диэлектриком (изолятором).

Для того чтобы алмаз приобрел электропроводность, его надо либо облучать жестким ультрафиолетовым излучением, либо нагреть до температуры в несколько тысяч градусов, Кроме того, перенос электронов в зону проводимости может происходить под действием электрического поля очень высокой напряженности. В этом случае происходит явление, называемое пробоем диэлектрика.

Атом германия имеет такую же электронную конфигурацию, как и атом углерода, а кристаллическая структура германия подобна структуре алмаза. Поэтому в кристаллическом германии также образуются две отдельные зоны. Ширина запрещенной зоны у германия (0,66 эВ) намного меньше, чем у алмаза, и уже при комнатной температуре небольшое количество электронов (примерно один из 10 в 21степени) за счет теплового движения "забрасывается" из валентной зоны в зону проводимости. Этого оказывается достаточно для того, чтобы германий обладал заметной электропроводностью: она у него в 10 раз выше, чем у алмаза, хотя и в 10 раз меньше, чем у типичных металлов. Германий и ряд других веществ с не очень широкой (< 3 эВ) запрещенной зоной (Si, GaAs, PbS) называют полупроводниками.

Полупроводником является и серое олово - кристаллическая модификация, устойчивая при температурах ниже 14°С. Структура серого олова также аналогична структуре алмаза. Однако ширина запрещенной зоны в этом веществе столь мала (примерно 0,1 эВ), что уже при комнатной температуре из валентной зоны в зону проводимости переходит довольно большое количество электронов. Поэтому электропроводность серого олова лишь в 15 раз ниже, чем металлического белого олова - модификации, устойчивой при комнатной и более высоких температурах.

На примере серого и белого олова мы столкнулись с таким важным обстоятельством, что понятия "элементы-металлы" и "вещества, обладающие металлическими свойствами" нетождественны. Элементы-металлы могут образовывать простые вещества-полупроводники (серое олово), а элементы-неметаллы - вещества с металлическим типом химической связи. Например, углерод и мышьяк - элементы-неметаллы, однако образуемые ими простые вещества графит и серый мышьяк обладают электропроводностью металлического типа.

////Ионные кристаллы

Теперь рассмотрим строение энергетических зон в кристаллах, образовав-шихся из сильно различающихся по электроотрицательности атомов. Так как орбитальные энергии исходных атомов сильно различаются, то при перекрывании их АО возникают две отдельные зоны. Зона с низкой энергией (валентная) в основном состоит из орбиталей более электроотрицательных атомов, а зона с высокой энергией (зона проводимости) - из орбиталей менее электроотрицательных атомов.

В кристаллическом NaCl валентная зона полностью занята, а зона проводимости - свободна. Ширина запрещенной зоны в хлориде натрия довольно велика и составляет около 7 эВ. Поэтому кристаллический хлорид натрия, как и большинство других ионных веществ, является при комнатной температуре диэлектриком.

Расплавы ионных веществ (например, NaCl) проводят электрический ток. Однако электропроводность в этих случаях обусловлена подвижностью ионов, а не электронов.

///Структуры ковалентных, ионных и металлических кристаллов. Ковалентные, металлические и ионные радиусы атомов

Кристаллические структуры веществ с различным типом химической связи формируются в соответствии с разными принципами.

В атомном ковалентном кристалле число связей, образуемых каждым из атомов, обычно равно числу его валентных орбиталей. Например, в кристалле алмаза каждый атом углерода находится в тетраэдрическом валентном окружении, как и в молекулах насыщенных углеводородов. В кварце кристаллическом SiO2 каждый атом кремния образует четыре связи с атомами кислорода, а каждый атом кислорода - две связи с атомами кремния.

В ионных веществах каждый анион стремится иметь в своем окружении как можно больше катионов, а каждый катион - как можно больше анионов. Поэтому в ионных кристаллах число соседних противоионов всегда значительно превышает валентность или степень окисления соответствующего атома. Например, в кристалле NaCl каждый анион Сl- окружен шестью катионами Na+ , а каждый катион натрия - шестью хлорид-ионами.

Наконец, в металлических кристаллах валентные электроны так слабо связаны с атомами, что структуру металла часто представляют как совокупность катионов, окруженных "газом" из почти свободных электронов. Поэтому в металлах атомы обычно располагаются так, чтобы при минимальном объеме кристалла расстояния между атомами были наибольшими. Иными словами, атому в таком кристалле выгоднее иметь много удаленных соседей, чем немного близких. Например, в кристаллической структуре а-железа (модификации, устойчивой при температурах ниже 769°С) каждый атом имеет восемь ближних соседей на расстоянии 248 пм и еще шесть более удаленных, расстояние до которых равно 287 пм. Такую же кристаллическую структуру имеют при стандартных условиях все щелочные металлы, барий, хром, молибден, ванадий и ряд других металлов.

Естественно, что расстояния между одними и теми же атомами в кристаллах с различным типом связи имеют разные значения. Например, в ковалентном кристалле серого олова длина связи Sn-Sn равна 280 пм, тогда как в металлическом кристалле белого олова кратчайшее межатомное расстояние составляет 302 пм. Поэтому для предсказания расстояний между атомами используют атомные радиусы различных типов - ковалентные, ионные и металлические. Эти радиусы являются расчетными величинами, определяемыми по уже известным межатомным расстояниям.

За ковалентный радиус атома принимают половину длины одинарной связи между одинаковыми атомами. Например, ковалентным радиусом атома водорода считают половину расстояния Н-Н в молекуле Н2 (37 пм), а ковалентным радиусом атома углерода - половину расстояния С-С в кристалле алмаза (77 пм). Вычисленная с использованием этих значений длина связи С-Н равна 114 пм, что неплохо совпадает с экспериментальной величиной (109 пм в молекуле СН4). Кратные связи короче одинарных, поэтому при расчете их длин либо вводят специальные поправки, либо используют особые значения ковалентных радиусов. Металлический радиус тоже определяют как половину кратчайшего межъядерного расстояния в металлическом кристалле. Металлические радиусы атомов всегда больше ковалентных.

Более сложным образом находят ионные радиусы. При присоединении электрона к нейтральному атому межэлектронное отталкивание в его валентной оболочке усиливается, поэтому радиус аниона больше ковалентного радиуса нейтрального атома. Напротив, размер утратившего электроны катиона меньше размера исходного атома. Поэтому считают, что при образовании ионного кристалла крупные анионы укладываются вплотную друг к другу, а остающиеся между ними пустоты заполняют катионы. Соответственно, за радиус аниона принимают половину кратчайшего межанионного расстояния, а за радиус катиона- разность между кратчайшим расстоянием анион-катион и радиусом аниона.

47. Комплексы. Комплексные соединения – соединения, обладающие рядом признаков:

1) В комплексах всегда можно выделить центральный атом и атомы окружения. Из суммы их зарядов складывается заряд комплекса (положительный 2+, отрицательный 3-, или нейтральный ).

2) Комплексные соединения образуются в результате соединения друг с другом обычных ионов и молекул, причем многоатомные ионы или молекулы входят в состав комплексных частиц целиком, с сохранением всех химических связей.

3) У центрального атома больше химических связей, чем предписывает ему его степень окисления или валентность.(в 4- один ион железа2 окружен 6 цианид ионами)

4) Комплексные частицы в кристаллических веществах и растворах существуют как единое целое.

Комплексные соединения в природе: криолит Na3AlF6 содержит в составе ион 3-, гемм, хлорофилл, витамин В-12 тоже комплексы. Комплексами являются многие ферменты. Комплексы применяются как катализаторы, пигменты, используются для выделения металлов из руд, разделения смесей. (к комплексам не относят двойные соли!!)

Основные понятия:

Комплексообразователь – центральный атом или ион в комплексных частицах (обычно ион или атом металла, хотя бывает и неметалл(2-, -, -.))

Лиганды – нейтральные ионы или молекулы, связанные с комплексообразователем расположенные вокруг его (образуют его координационное окружение). Это молекулы или ионы, способные быть донорами электронных пар(атом, дающий ее – донорный атом). Лиганды бывают монодентатными(образуют одну координационную связь) и полидентатными(несколько, так как в них несколько донорных атомов)

Координационное число – количество связей, которые образует комплексообразователь с лигандами (чаще всего 6,4,2).

Образование комплексов в растворах и их устойчивость.

Комплексные соединения можно получать разными способами (например взаимодействием безводной соли Mg(ClO4)2 с аммиаком, при этом получается (ClO4)2). Однако с практической точки зрения наиболее интересно образование комплексов в водных растворах, содержащих ионы металла-комплексообразователя и лиганды. Энтальпии гидратации большинства катионов достаточно велики, поэтому молекулы воды прочно связаны с ионами металлов и их можно считать координированными лигандами. Такие гидратированные ионы называют аквакомплексами. Частицы, которые образуют с ионами металла более прочные связи, чем молекулы воды, способны вытеснять их из координационного окрхжения комплексообразователя. Процесс замещения происходит ступенчато, каждая ступень характеризуется соответствующей константой равновесия. Например:

1)2+ + NH3 = +H2O K=/=590

2) + + NH3= 2++ H2O K=/[ Ni(NH3)(H2O)52+ ]=170

3) + NH3= 2++ H2O K=/[ Ni(NH3)2(H2O)42+ ]=54

4) + NH3= 2++ H2O K=/[ Ni(NH3)3(H2O)32+ ]=16,6

5) + NH3= 2++ H2O K=/[ Ni(NH3)4(H2O)22+ ]=5,4

6) + NH3= 2++ H2O K=/[ Ni(NH3)5(H2O)2+ ]=1,12

Константы Кi называются ступенчатыми константами образования комплекса(обычно чем больше номер константы, тем меньше ее значение).

Константа суммарного процесса)2+ +6 NH3=2++ H2O обозначается буквой?(бета) и называется константой устойчивости комплекса. Она равна произведению всех ступенчатых констант. Но может считаться и по обычной формуле.

Константу устойчивости можно записать не только для комплекса, но и для любой стадии замещения воды иными лигандами.

Иногда в таблицах приводят константы нестойкости, которые являются константами равновесия реакций разрушения комплексов(замещение лигандов молекулами воды) они являются обратными по отношению к константам устойчивости.

Поэтому для СЧ = 5, когда ЦА находится в центре тригональной бипирамиды (ТБП), по вершинам которой располагаются ЭП, отталкивание будет минимальным тогда, когда неподелённые пары будут максимально «разведены» в пространстве. Для ТБП имеется два неэквивалентных положения заместителей: экваториальное (в плоскости правильного треугольного основания) и аксиальное – в противоположных взаимно перпендикулярных вершинах и три различных значения валентных углов: ÐХ э АХ э = 120° в плоскости основания (три угла), ÐХ э АХ а = 90° (шесть углов) и один угол ÐХ а АХ а =180°. Соответственно возможно три типа отталкивания между ЭП: максимальное отталкивание будет при наименьшем угле между ЭП. В соответствии с приведенным выше рядом отталкивания в зависимости от типа ЭП (НП или СП) неподелённые пары стремятся располагаться в экваториальном положении. Поэтому, как правило, приведенная в табл. 9 и на рис. 24 геометрия молекул типа АХ 4 Е 1 («искаженный тетраэдр» или жаргонное наименование «ходули») более устойчива, чем тригональная пирамида, в которой ЦА находится в центре треугольного основания, а в вершинах заместители Х.

По тем же причинам молекулы типа АХ 3 Е 2 – «Т-образные», а не плоские треугольные; АХ 2 Е 3 – линейные; АХ 4 Е 2 – квадратные.

Не следует смешивать разные понятия: геометрию расположения ЭП (т. е. А, Х и Е), целиком и однозначно задаваемую СЧ (линейная, треугольная, тетраэдрическая, ТБП, октаэдрическая), и геометрию самой частицы, т. е. взаимное расположение атомов (А и всех Х) в частице . Неподелённые пары – неотъемлемая часть центрального атома А, и их взаимное расположение имеет только вспомогательное значение для определения геометрии частицы АХ n .

На рис. 25приведены модели некоторых молекул, отражающие их строение в реальном масштабе. При этом следует помнить (см. разд. 2), что электронные облака, как и в изолированных атомах, не имеют четко очерченных границ.

Алгоритм определения геометрии частицы по методу Гиллеспи следующий (рассмотрим на примере SО 2):

1. Исходя из электронных конфигураций атомов (S 3s 2 3р 4 , О 2s 2 2p 4) определить их ковалентность: 2, 4 или 6 для S и 2 для О.

2. Из значений ковалентностей построить структурную формулу, т. е. определить строение частицы: число и расположение s- и p‑связей. В данном случае при ковалентности О, равной только двум, возможен единственный вариант: сера является центральным атомом, кислороды – концевые, связанные с S двойными s- и p-связями: О=S=О.

3. Определить число неподеленных пар центрального атома (число НП заместителей на геометрию не влияет). Всего валентных электронов у S 6, из них 4 участвуют в четырех связях, остается 2 – одна НП. Молекула типа АХ 2 Е 1 .

4. Найти стерическое число (СЧ = 2 + 1 = 3) и задаваемое им расположение ЭП: по вершинам правильного треугольника, под Ð120°.

5. Расположить НП так, чтобы отталкивание НП-НП и НП-СП было минимальным, и определить таким образом геометрию частицы. В данном случае имеется единственный вариант, так как все вершины правильного треугольника (как и тетраэдра и октаэдра) эквивалентны. Следовательно, молекула SО 2 – угловая, валентный ÐОSО = 120°.

Заметим, что реально ÐОSО несколько меньше 120°, так как отталкивание между НП и заместителями больше, чем между двумя заместителями.

Изложенный подход применим и к более сложным ситуациям: когда заместители у ЦА разные (например, РСlF 2), или центральных атомов несколько (Сl 2 O 7), или ЦА – ион.

Для РСlF 2 ЦА – Р, тип АХ 3 Е 1 (точнее, АХ 2 Х’Е 1 но важно, что заместителей 3, не важно, что они неэквивалентны), СЧ = 3 + 1 = 4, следовательно, ЭП расположены по вершинам тетраэдра, а сама молекула пирамидальная (и фосфор, и заместители находятся в вершинах тригональной пирамиды; валентные углы близки к тетраэдрическому углу 109°, но несколько меньше из-за более сильного отталкивания НП. Естественно, что, в отличие от правильных РF 3 и РСl 3 , молекула РСlF 2 будет иметь несколько искаженную форму.

Для Сl 2 O 7 определяем, что такая частица может быть построена (ковалентность О – 2) только при ковалентности хлора 7, оба хлора центральные, каждый связан двойными связями с тремя концевыми О и еще одним центральным, мостиковым, кислородом – одинарной связью, НП у атомов хлора не остается. Следовательно, СЧ(Сl) = 4 (каждый хлор, рассматриваемый как ЦА частицы СlО 4 , типа АХ 4 Е 0), атомы хлора расположены в центре, а кислороды в вершинах двух тетраэдров, причем тетраэдры имеют одну общую вершину – мостиковый кислород. Для этого кислорода СЧ(О) = 2 + 2 = 4 и заместители – атомы хлора – располагаются относительно него в вершинах тетраэдра (в двух других вершинах – две НП мостикового О). Величины всех валентных углов (ОСlO, ClOCl) – тетраэдрические, близки к 109°.

Подход применим не только к нейтральным молекулам, но и к ионам. Например, для определения геометрии Н 3 О + будем формально рассматривать в качестве центрального ион О + , который имеет пять валентных электронов, одну неподеленную ЭП, ковалентность, равную 3, и СЧ(О +) = 3 + 1 = 4. Следовательно, ЭП располагаются относительно кислорода по вершинам тетраэдра, все валентные углы близки к 109°, частица – пирамидальная. Обратите внимание на то, что здесь одна из связей – донорно-акцепторная, но это никак не мешает применить метод Гиллеспи.

Рассмотрим ещё один пример – частицу с сопряженными связями, нитрат-ион. Для определения геометрии NО 3 - удобно рассмотреть резонансную структуру, изображенную на рис. 23, с. 73. Центральным атомом здесь формально служит ион N + ; СЧ(N +) = 3 + 0 = 3, следовательно, нитрат-ион – плоский, атом N расположен в центре правильного треугольника, три атома О – в его вершинах. Этот пример ещё раз показывает полезность метода ВС и резонансных структур. Здесь все три возможных резонансных структуры дают одинаковую геометрию, но возможны более сложные случаи, когда из них может быть предсказана различная геометрия частицы.

Очень важные для геологии объекты – силикаты. Изолированный ортосиликат-ион SiО 4 4 - – тетраэдрический (СЧ Si = 4). Диортосиликат Si 2 О 7 6 - , как показано выше на схеме, представляет собой два кремнекислородных тетраэдра, связанных через мостиковый кислород, т. е. с общей вершиной. Аналогичным образом можно построить триортосиликат, объединив кремнекислородные тетраэдры в цепочку, 8 - , состав (Si 3 O 10) 8 - . Но в природе встречаются трисиликаты иного строения, циклического – кольцо (Si 3 O 9) 6 - , как в бенитоите BaTiSi 3 O 9 . Кольца из шести тетраэдров (Si 6 O 18) 12 - встречаются в берилле. Из кремнекислородных тетраэдров можно составить бесконечные цепи, ленты, слои и т. п. Строение некоторых силикатов показано на рис. 26. Важно усвоить, что значения ковалентности кремния и кислорода и направленность ковалентной связи полностью обусловливает и строение многочисленных разновидностей силикат-анионов, включая полимерные. Их основная структурная единица – кремнекислородные тетраэдры, которые могут соединяться только через мостиковые атомы О, т. е. общими вершинами, но не ребрами или гранями.

Теперь можно вернуться к тонкостям геометрического строения молекул и объяснить, почему в Н 2 S и РН 3 валентный угол близок к 90°, а в Н 2 О и NН 3 – к тетраэдрическому. Метод отталкивания ЭП предсказывает для всех перечисленных частиц тетраэдрические валентные углы, так как везде СЧ = 4 (2 + 2 или 3 + 1). Отталкивание НП‑СП больше, чем СП‑СП, поэтому все валентные углы должны быть несколько меньше тетраэдрического (а ÐХАЕ несколько больше). Метод Гиллеспи – скорее качественный, чем количественный, и не может предсказать, насколько отклонится от идеального тетраэдрического значения валентный угол вследствие отталкивания связывающих пар неподеленными. В данном случае атомы S и Р существенно больше, чем О и N, поэтому и отталкивание НП-СП для них больше, и отклонение от тетраэдрического угла для них больше, достигая ~15°, тогда как для небольших О и N оно не превышает 5°. Впрочем, это объяснение не претендует на единственность, да и такие тонкости не столь существенны. Важно, что метод отталкивания ЭП позволяет уверенно предсказывать, будет ли данная частица линейной или угловой (здесь и Н 2 О и Н 2 S – угловые), треугольной или пирамидальной (NН 3 и РН 3 – пирамидальные), а отличия валентных углов на десяток градусов не слишком существенны.

В обоих изложенных подходах к геометрии молекул лежит одна идея – минимизация отталкивания всех ЭП ЦА, но в концепции Гиллеспи, в отличие от подхода гибридизации атомных орбиталей (см. подразд. 3.4), она выражена явно, и именно этот подход позволяет очень просто предсказывать геометрию частиц.

Вопросы для самопроверки

1. Какое предположение лежит в основе метода отталкивания ЭП?

2. Что такое стерическое число , координационное число ?

3. Может ли ковалентность более чем в два раза превышать стерическое число?

4. Определите для ВF 3 и NF 3 стерическое число, расположение ЭП и геометрию. Почему геометрия этих молекул разная?

5. Для ВО 3 3 - , ВF 4 - и SО 3 2 - напишите структурные формулы, определите СЧ, расположение ЭП, геометрию и валентные углы.

6. Какие положения занимают неподеленные пары при СЧ = 5?

7. Сравните геометрию SiF 4 и SF 4 , РF 5 и ClF 5 .

8. Объясните геометрию С 2 Н 2 и С 2 Н 4 , используя метод Гиллеспи.

9. Приведите примеры пирамидальных, тетраэдрических и октаэдрических частиц.

10. Приведите примеры линейных частиц разных типов АХ 2 Е m .

11. Анион NO 3 - - плоский. Приведите пример плоского двухзарядного аниона.

12. Какова геометрия циклического гексасиликата (Si 6 O 18) 12 - ? Какой состав и геометрия будут у линейного гексасиликата?

Простым и удобным методом предсказания геометрии молекул является модель отталкивания локализованных электронных пар или метод Гиллеспи, имеющий в своей основе метод ВС. Исходными данными для указанного метода являются число связанных с центральным атомом других атомов, валентные возможности всех связанных атомов, количество электронов на внешнем слое центрального атома. Основные положения метода Гиллеспи сводятся к следующему.

1. Каждая электронная пара, как образующая связь, так и неподеленная, занимает определённое место в пространстве (локализованная электронная пара). Облако двойной и тройной связи рассматривается как единое. Разумеется, электронные пары (электронные облака) отталкиваются.

2. В зависимости от числа локализованных электронных пар (электронных облаков) они располагаются в пространстве следующим образом:

2 – линейная конфигурация,

3 – правильный треугольник,

4 – тетраэдр,

5 – правильная тригональная бипирамида,

Процедура работы по методу Гиллеспи примерно следующая. Обозначим центральный атом буквой А, любой связанный с ним другой атом – буквой В, неподелённую электронную пару – буквой Е. Пусть общее число партнёров центрального атома по химической связи – n, а число неподелённых электронных пар у него – m. Тогда рассматриваемая молекула в своеобразном свёрнутом виде относительно центрального атома запишется AB n E m . Разумеется, в качестве центрального атома выбирается самый многовалентный атом. Сложные, громоздкие молекулы в рамках метода Гиллеспи рассматриваются по частям. В результате суммирования n и m по предложенному выше методу определяется исходная модель геометрии молекулы или иона, а затем после своеобразного отбрасывания неподелённых электронных пар – собственно геометрия частицы.

Возможные дополнения к методу Гиллеспи:

а) облако двойной связи занимает в пространстве бóльшее место, чем облако однократной связи;

б) облако тройной связи занимает в пространстве бóльшее место, чем облако двойной связи и тем более, чем облако однократной связи;

в) в случае полярной ковалентной связи электронное облако сконцентрировано в большей степени возле более электроотрицательного атома;

г) облако неподелённой электронной пары занимает в пространстве бóльшее место, чем облако однократной связи.

Эти дополнения позволяют производить уточнения к геометрии молекул, отклонения от валентных углов, предсказываемых основной процедурой.

Продемонстрируем возможности метода Гиллеспи на примере нескольких молекул. Начнём с разобранных выше молекул воды и аммиака.



Н 2 О; АВ 2 Е 2 ; ; исходная модель – тетраэдр; молекула – уголковая, угол Н–О–Н 109 о 28".

NH 3 ; АВ 3 Е 1 ; ; исходная модель – тетраэдр; молекула – тригональная пирамида, угол Н–N–Н 109 о 28". Обратим внимание, что тетраэдр, являющийся правильной тригональной пирамидой, более старшая фигура (центральный атом и четыре партнёра по химической связи), чем собственно тригональная пирамида (центральный атом и три партнёра по химической связи).

Еще несколько примеров.

SnCl 2 ; АВ 2 Е 1 ; ; исходная модель – правильный треугольник; молекула – уголковая, угол Cl–Sn–Cl равен 120 о или меньше в силу того, что свободная электронная пара занимает бóльшее место в пространстве, чем связывающая пара.

СО 2 ; АВ 2 Е 0 ; ; линейная молекула.

Анионы кислот проще всего рассматривать также, как и молекулы самих кислот: H 2 SO 4 и SO 4 2– AB 4 E 0 ; H 3 PO 4 и PO 4 3– AB 4 E 0 ; H 2 СO 3 и СO 3 2– AB 3 E 0 и т.д.

В ряде случаев возможны несколько моделей строения частиц в рамках метода Гиллеспи, выбирается энергетически более выгодная. Например, XeF 2 ; AB 2 E 3 ; исходная модель – тригональная пирамида, возможны варианты:

Первый вариант энергетически более выгоден: электронные пары максимально разведены, максимально удалены и атомы фтора, имеющие одинаковые эффективные заряды. Вывод: молекула XeF 2 – прямолинейна.

Пособие по общей химии содержит материал, традиционно включаемый в первую часть курса: атомное ядро и радиоактивность, строение атома, молекулы и ковалентная связь, химическая связь в конденсированном состоянии вещества. Его особенностью является изложение всех вопросов, начиная с нулевого уровня, без опоры на школьную программу. Для всех вводимых понятий, включая самые элементарные, даны определения. Вместе с этим довольно популярная форма сочетается с достаточной строгостью изложения. Каждый тематический раздел заканчивается вопросами для самопроверки, предназначенными помочь студенту в усвоении материала. Несколько глубже, чем это обычно принято в подобных курсах, представлены вопросы химической связи в кристаллах, особенно классификация твердых тел по электронной проводимости и нестехиометрические соединения. Это связано с тем, что издание в первую очередь предназначено для изучающих в НГУ общую химию студентов геолого-геофизического факультета, а для геологов в большей степени важны химические процессы именно в конденсированном состоянии. Пособие может оказаться полезным и для первокурсников факультета естественных наук, для вузовских и школьных преподавателей химии.

Приведенный ниже текст получен путем автоматического извлечения из оригинального PDF-документа и предназначен для предварительного просмотра.
Изображения (картинки, формулы, графики) отсутствуют.

Атома (точнее, их центры) располагаются на одной линии – это при- мер линейной трехатомной молекулы. Для молекулы SnCl2 электронная конфигурация ЦА 4d105s25p2, четыре валентных электрона, и только два из них.. участвуют в образовании σ-связей: Сl––Sn––Cl. Остающиеся два валентных электрона олова остаются неподеленными, т. е. у ЦА, кроме двух СП, имеется еще и одна НП, а общее количество ЭП равно трем. Естественно, для минимизации отталкивания три элек- тронные пары располагаются в пространстве не так, как две, а под углом 120º, в вершине которого находится ЦА. Такие молекулы на- зывают угловыми. Для удобства далее будем обозначать ЦА как А, заместители – Х, неподеленные ЭП – Е (ограничимся пока молекулами с одним ЦА). Полезно ввести понятие стерического числа (СЧ), равного сумме количества заместителей и неподелённых пар. Количество ближайших к выделенному атому соседних ато- мов (ближайших соседей) называют координационным числом (КЧ). Для частиц с ковалентными связями КЧ равно числу σ-связей. Иначе для многоатомной частицы типа АХnEm СЧ = n + m или равно сумме координационного числа и числа неподеленных пар центрального атома. Для рассмотренных примеров СЧ = 2 + 0 = 2 для ВеСl2 и 3 = 2 + 1 для SnСl2. Достаточно очевидно, что если в центр многогранника поместить центральный атом А, то для значе- ний СЧ, равного 4, ЭП должны располагаться по вершинам тетраэд- ра; для СЧ = 5 – по вершинам тригональной бипирамиды; для СЧ = 6 – по вершинам октаэдра. Геометрия расположения ЭП и частиц по Гиллеспи приведена на рис. 24 и в табл. 9. При СЧ ≥ 5 возникает возможность различного взаиморасполо- жения заместителей и НП, т. е. возникает возможность появления пространственных изомеров – соединений одинакового состава, отличающихся геометрией (пространственным строением). Метод Гиллеспи позволяет предсказывать, какие из этих изомеров окажут- ся наиболее устойчивыми, если ввести одно уточнение: отталкива- ние между ЭП увеличивается в ряду СП-СП – СП-НП – НП-НП (связывающие электронные пары притягиваются сразу к двум яд- 78 рам, поэтому их облака расположены в пространстве более ком- пактно, чем НП, и отталкивание между ними меньше). Таблица 9 Геометрия частиц по Гиллеспи СЧ Тип Располо- Геометрия час- Идеальные Примеры жение тицы валентные ЭП углы 2 АХ2Е0 Линейное Линейная 180° BeF2, CO2 3 АХ3Е0 Тре- Треугольная 120° BF3, SO3 АХ2Е1 угольное Угловая 120° SnCl2, SO2 АХ4Е0 Тетраэд- Тетраэдрическая 109° CH4, SO42− 4 АХ3Е1 рическое Пирамидальная 109° H3O+, SO32− АХ2Е2 Угловая 109° H2O, ClO22− АХ5Е0 ТБП 90° (6) , 120° PF5, SiF5− * 5 (3), 180° (1) АХ4Е1 По ТБП Искажённая тетра- 90° (3), 120° SF4, IOCl3 эдрич. («ходули») (1), 180° (1) АХ3Е2 «Т»-образная 90°(2), 180°(1) ClF3, XeOF2 АХ2Е3 Линейная 180° ICl2−, XeF2 АХ6Е0 Октаэд- Октаэдрическая 90° SF6, PCl6− 6 АХ5Е1 рическое Квадратная пира- 90° ClF5, TeCl5− мида АХ4Е2 Квадрат 90° ICl4−, XeF4 Поэтому для СЧ = 5, когда ЦА находится в центре тригональной бипирамиды (ТБП), по вершинам которой располагаются ЭП, оттал- кивание будет минимальным тогда, когда неподелённые пары будут максимально «разведены» в пространстве. Для ТБП имеется два не- эквивалентных положения заместителей: экваториальное (в плоско- сти правильного треугольного основания) и аксиальное – в противо- положных взаимно перпендикулярных вершинах и три различных значения валентных углов: ∠ХэАХэ = 120° в плоскости основания ____________________ * В скобках указано количество таких углов в частице. 79 (три угла), ∠ХэАХа = 90° (шесть углов) и один угол ∠ХаАХа =180°. Соответственно возможно три типа отталкивания между ЭП: макси- мальное отталкивание будет при наименьшем угле между ЭП. В со- ответствии с приведенным выше рядом отталкивания в зависимости от типа ЭП (НП или СП) неподелённые пары стремятся распола- гаться в экваториальном положении. Поэтому, как правило, приве- денная в табл. 9 и на рис. 24 геометрия молекул типа АХ4Е1 («иска- женный тетраэдр» или жаргонное наименование «ходули») более устойчива, чем тригональная пирамида, в которой ЦА находится в центре треугольного основания, а в вершинах заместители Х. По тем же причинам молекулы типа АХ3Е2 – «Т-образные», а не плоские треугольные; АХ2Е3 – линейные; АХ4Е2 – квадратные. Не следует смешивать разные понятия: геометрию расположе- ния ЭП (т. е. А, Х и Е), целиком и однозначно задаваемую СЧ (ли- нейная, треугольная, тетраэдрическая, ТБП, октаэдрическая), и гео- метрию самой частицы, т. е. взаимное расположение атомов (А и всех Х) в частице. Неподелённые пары – неотъемлемая часть цен- трального атома А, и их взаимное расположение имеет только вспо- могательное значение для определения геометрии частицы АХn. Рис. 25. Модели молекул HgCl2, SO2, BF3, CH4, XeF4 и SF6 На рис. 25приведены модели некоторых молекул, отражающие их строение в реальном масштабе. При этом следует помнить (см. разд. 2), что электронные облака, как и в изолированных ато- мах, не имеют четко очерченных границ. Алгоритм определения геометрии частицы по методу Гиллеспи следующий (рассмотрим на примере SО2): 1. Исходя из электронных конфигураций атомов (S 3s23р4, О 2s22p4) определить их ковалентность: 2, 4 или 6 для S и 2 для О. 2. Из значений ковалентностей построить структурную форму- лу, т. е. определить строение частицы: число и расположение σ- и π-связей. В данном случае при ковалентности О, равной только 80 двум, возможен единственный вариант: сера является центральным атомом, кислороды – концевые, связанные с S двойными σ- и π- связями: О=S=О. 3. Определить число неподеленных пар центрального атома (число НП заместителей на геометрию не влияет). Всего валентных электронов у S 6, из них 4 участвуют в четырех связях, остается 2 – одна НП. Молекула типа АХ2Е1. 4. Найти стерическое число (СЧ = 2 + 1 = 3) и задаваемое им расположение ЭП: по вершинам правильного треугольника, под ∠120°. 5. Расположить НП так, чтобы отталкивание НП-НП и НП-СП было минимальным, и определить таким образом геометрию части- цы. В данном случае имеется единственный вариант, так как все вершины правильного треугольника (как и тетраэдра и октаэдра) эквивалентны. Следовательно, молекула SО2 – угловая, валентный ∠ОSО = 120°. Заметим, что реально ∠ОSО несколько меньше 120°, так как отталкивание между НП и заместителями больше, чем между двумя заместителями. Изложенный подход применим и к более сложным ситуациям: когда заместители у ЦА разные (например, РСlF2), или центральных атомов несколько (Сl2O7), или ЦА – ион. Для РСlF2 ЦА – Р, тип АХ3Е1 (точнее, АХ2Х’Е1 но важно, что заместителей 3, не важно, что они неэквивалентны), СЧ = 3 + 1 = 4, следовательно, ЭП расположены по вершинам тетраэдра, а сама мо- лекула пирамидальная (и фосфор, и заместители находятся в верши- нах тригональной пирамиды; валентные углы близки к тетраэдриче- скому углу 109°, но несколько меньше из-за более сильного оттал- кивания НП. Естественно, что, в отличие от правильных РF3 и РСl3, молекула РСlF2 будет иметь несколько искаженную форму. Для Сl2O7 определяем, что такая частица О О может быть построена (ковалентность О – 2) ⏐⏐ ⏐ ⏐ только при ковалентности хлора 7, оба хлора О=Сl⎯О⎯Cl=О центральные, каждый связан двойными связя- ⏐⏐ ⏐ ⏐ ми с тремя концевыми О и еще одним цен- О О тральным, мостиковым, кислородом – одинарной связью, НП у ато- 81 мов хлора не остается. Следовательно, СЧ(Сl) = 4 (каждый хлор, рассматриваемый как ЦА частицы СlО4, типа АХ4Е0), атомы хлора расположены в центре, а кислороды в вершинах двух тетраэдров, причем тетраэдры имеют одну общую вершину – мостиковый ки- слород. Для этого кислорода СЧ(О) = 2 + 2 = 4 и заместители – ато- мы хлора – располагаются относительно него в вершинах тетраэдра (в двух других вершинах – две НП мостикового О). Величины всех валентных углов (ОСlO, ClOCl) – тетраэдрические, близки к 109°. Подход применим не только к нейтральным молекулам, но и к ионам. Например, для определения геометрии Н3О+ будем формаль- но рассматривать в качестве центрального ион О+, который имеет пять валентных электронов, одну неподеленную ЭП, ковалентность, равную 3, и СЧ(О+) = 3 + 1 = 4. Следовательно, ЭП располагаются относительно кислорода по вершинам тетраэдра, все валентные уг- лы близки к 109°, частица – пирамидальная. Обратите внимание на то, что здесь одна из связей – донорно-акцепторная, но это никак не мешает применить метод Гиллеспи. Рассмотрим ещё один пример – частицу с сопряженными связя- ми, нитрат-ион. Для определения геометрии NО3− удобно рассмот- реть резонансную структуру, изображенную на рис. 23, с. 73. Цен- тральным атомом здесь формально служит ион N+; СЧ(N+) = 3 + 0 = 3, следовательно, нитрат-ион – плоский, атом N расположен в центре правильного треугольника, три атома О – в его вершинах. Этот при- − − мер ещё раз показывает полезность ме- О O тода ВС и резонансных структур. Здесь O − − все три возможных резонансных струк- O Si Si O туры дают одинаковую геометрию, но O − O − возможны более сложные случаи, когда из них может быть предсказана различ- ная геометрия частицы. Очень важные для геологии объекты – силикаты. Изолирован- ный ортосиликат-ион SiО44− – тетраэдрический (СЧSi = 4). Диорто- силикат Si2О76−, как показано выше на схеме, представляет собой два кремнекислородных тетраэдра, связанных через мостиковый кисло- род, т. е. с общей вершиной. Аналогичным образом можно постро- ить триортосиликат, объединив кремнекислородные тетраэдры в 82 цепочку, 8−, состав (Si3O10)8−. Но в природе встре- чаются трисиликаты иного строения, циклического – кольцо (Si3O9)6−, как в бенитоите BaTiSi3O9. Кольца из шести тетраэдров (Si6O18)12− встречаются в берилле. Из кремнекислородных тетраэд- ров можно составить бесконечные цепи, ленты, слои и т. п. Строе- ние некоторых силикатов показано на рис. 26. Важно усвоить, что значения ковалентности кремния и кислорода и направленность ко- валентной связи полностью обусловливает и строение многочислен- ных разновидностей силикат-анионов, включая полимерные. Их ос- новная структурная единица – кремне- кислородные тетра- эдры, которые мо- гут соединяться только через мости- ковые атомы О, т. е. общими вершина- ми, но не ребрами или гранями. Теперь можно вернуться к тонко- стям геометриче- ского строения мо- лекул и объяснить, почему в Н2S и РН3 валентный угол близок к 90°, а в Рис. 26. Строение некоторых силикат-анионов Н2О и NН3 – к тет- раэдрическому. Метод отталкивания ЭП предсказывает для всех пе- речисленных частиц тетраэдрические валентные углы, так как везде СЧ = 4 (2 + 2 или 3 + 1). Отталкивание НП-СП больше, чем СП-СП, поэтому все валентные углы должны быть несколько меньше тетра- эдрического (а ∠ХАЕ несколько больше). Метод Гиллеспи – скорее качественный, чем количественный, и не может предсказать, на- сколько отклонится от идеального тетраэдрического значения ва- лентный угол вследствие отталкивания связывающих пар неподе- 83 ленными. В данном случае атомы S и Р существенно больше, чем О и N, поэтому и отталкивание НП-СП для них больше, и отклонение от тетраэдрического угла для них больше, достигая ~15°, тогда как для небольших О и N оно не превышает 5°. Впрочем, это объясне- ние не претендует на единственность, да и такие тонкости не столь существенны. Важно, что метод отталкивания ЭП позволяет уверен- но предсказывать, будет ли данная частица линейной или угловой (здесь и Н2О и Н2S – угловые), треугольной или пирамидальной (NН3 и РН3 – пирамидальные), а отличия валентных углов на деся- ток градусов не слишком существенны. В обоих изложенных подходах к геометрии молекул лежит одна идея – минимизация отталкивания всех ЭП ЦА, но в концепции Гиллеспи, в отличие от подхода гибридизации атомных орбиталей (см. подразд. 3.4), она выражена явно, и именно этот подход позво- ляет очень просто предсказывать геометрию частиц. Вопросы для самопроверки 1. Какое предположение лежит в основе метода отталкивания ЭП? 2. Что такое стерическое число, координационное число? 3. Может ли ковалентность более чем в два раза превышать стери- ческое число? 4. Определите для ВF3 и NF3 стерическое число, расположение ЭП и геометрию. Почему геометрия этих молекул разная? 5. Для ВО33−, ВF4− и SО32− напишите структурные формулы, опре- делите СЧ, расположение ЭП, геометрию и валентные углы. 6. Какие положения занимают неподеленные пары при СЧ = 5? 7. Сравните геометрию SiF4 и SF4, РF5 и ClF5. 8. Объясните геометрию С2Н2 и С2Н4, используя метод Гиллеспи. 9. Приведите примеры пирамидальных, тетраэдрических и октаэд- рических частиц. 10. Приведите примеры линейных частиц разных типов АХ2Еm. 11. Анион NO3− − плоский. Приведите пример плоского двухзаряд- ного аниона. 12. Какова геометрия циклического гексасиликата (Si6O18)12−? Какой состав и геометрия будут у линейного гексасиликата? 84 3.7. Электроотрицательность. Полярность связи Если ковалентная связь образована двумя одинаковыми атомами (хлор в молекуле Cl2, углерод в кристалле алмаза), то обобществленные электроны в равной степени принадлежат обоим атомам: Cl··Cl или Cl–Cl, электронное облако равноудалено от них. Это неполярная ковалентная связь. Если атомы разные (или неэкви- валентные), то электронное облако смещено в сторону одного из них и на нем возникает частичный отрицательный заряд δ−, на другом положительный δ+, где δ < 1, молекула становится полярной (ди- польной), оставаясь, естественно, в целом электрически нейтраль- ной, например Hδ+–Clδ– или в других обозначениях H→Cl; направ- ление прямой стрелки указывает направление смещения электрон- ной плотности. Наличие зарядов в атомах приводит к увеличению энергии связи по сравнению с такой же (гипотетической) неполяр- ной связью; можно условно разделять вклады чисто ковалентной (неполярной) связи и электростатический, за счет взаимного притя- жения частично заряженных атомов. Свойство атомов оттягивать на себя электронную плотность при образовании ковалентной связи называют электроотрица- тельностью. Электроотрицательность (ЭО) зависит от заряда ядра (чем больше Z, тем прочнее удерживаются электроны ядром), раз- мера атома (чем дальше электрон от ядра, тем он при прочих равных условиях легче может быть смещен в сторону более электроотрица- тельного атома) и степени незавершённости внешнего электронного слоя до октета (поэтому галогены имеют большу́ю ЭО). Существует несколько количественных шкал ЭО. Электроотри- цательность связана с энергией отрыва и присоединения электрона. По Малликену, для атома А ЭОА = (IА + ЕА)/2, где IА и ЕА потенциал ионизации и сродство к электрону атома соответственно. Иначе ме- рой ЭО может служить упрочнение связи за счет электростатическо- го вклада: Δ = DAB – (1/2)(DA2 + DВ2), где DAB, DA2 и DВ2 – энергии связи молекул АВ, А2 и В2 соответственно. Наибольшее распростра- нение в химии получила шкала Л. Полинга, основанная на втором подходе. Именно соотношение ЭО атомов определяет такое полезное по- нятие, как степень окисления – условный заряд атома в соедине- 85 нии, если считать все связи полностью ионными (иногда исполь- зуют термин окислительное число). С использованием степени окис- ления записывается последовательность элементов в химических формулах, названия соединений, уравниваются окислительно- восстановительные реакции. Для коротких периодов (2-го и 3-го) ПС с роcтом заряда ядра Z при одинаковом числе электронных слоев потенциал ионизации рас- тет, увеличивается и электроотрицательность. Сверху вниз, по подгруппам ПС, увеличивается число электрон- ных слоёв, и этот эффект сильнее, чем рост Z. В итоге от Li к Cs, от Be к Ra, от F к At потенциал ионизации уменьшается. Аналогичным образом меняется и электроотрицательность (табл. 10). Таблица 10 Электроотрицательность атомов элементов по Полингу Второй период Li Be B C N O F ЭО 1,0 1,5 2,0 2,5 3,0 3,5 4,0 Третий период Na Mg Al Si P S Cl ЭО 0,9 1,2 1,5 1,8 2,1 2,5 3,0 Наиболее электроотрицательный элемент – фтор. Атом F – са- мый маленький (меньше только Н и не образующие соединений Не и Nе) и ему не хватает до завершения октета только одного электро- на. Следующий по электроотрицательности элемент – О, за ним N и Сl. У атомов почти всех металлов ЭО меньше 1,9; ЭОН = 2,1. В подразд. 3.2, с. 64, говорилось о стехиометрии соединений различных элементов с водородом: НЭ для подгруппы VIIА, Н2Э для VIА, Н3Э для VА, хотя для них имеются фториды ЭF7, ЭF6 и ЭF5 соответственно. Фтор – самый электроотрицательный элемент, и во всех фторидах электронная плотность смещена в его сторону. Сте- пень окисления элементов +7, +6 и +5 соответственно (обозначается так: I(VII), S(VI), Р(V), F(−I) или I+7, S+6, Р+5, F−1. Значения степени окисления и ковалентности здесь совпадают. Каким образом атомы I, S, Р достигают ковалентностей 7, 6, 5, подробно обсуждено в под- разд. 3.2 – путем возбуждения валентных электронов на d- подуровень. Если считать связи в рассматриваемых молекулах пол- ностью ионными (I7+F1− и т. п.), то все 7 (6, 5) валентных электронов 86 Э отдаются соответственно семи (шести, пяти) атомам фтора. Таким образом, и подход, основанный на ковалентности, и гипотетические ионные соединения должны обладать одинаковой стехиометрией. Водород, наоборот, чаще имеет ЭО меньше, чем Э, его степень окисления H+1. Степень окисления элементов в соединениях с водо- родом I−1, S−2, Р−3, им не хватает до октета 1, 2 или 3 электрона. В НI, Н2S, РН3 атом Н отдает свой электрон атомам Э, которые не могут принять на свои АО более, чем 1, 2 или 3 электрона соответственно. Электроотрицательность – относительная величина, но именно разность ЭО участвующих в связи атомов определяет ее полярность. При малой разнице (менее 0,5) связь можно считать практически неполярной, таковы важнейшие С⎯Н-связи в органических молеку- лах. А вот связи О⎯Н (ΔЭО = 1,4), С⎯О (ΔЭО = 1,0), N⎯О (ΔЭО = 0,9) – полярные, что существенно проявляется в свойствах органических соединений. Если разность ЭО равна или больше 2, смещение электронной плотности к более электроотрицательному атому настолько велико, что можно говорить о практически полно- стью ионной связи (примеры – галогениды щелочных металлов). Количественная мера полярности молекул – дипольный мо- мент. Для двухатомных молекул его величина тем больше, чем больше величина реального электрического заряда на атомах q и чем больше длина связи ℓ: ре = qℓ. Дипольный момент имеет направле- ние – принято, что он направлен от отрицательного заряда к поло- жительному. В молекулах НF, НСl, НВr, НI с уменьшением ΔЭО ве- личина заряда на атомах уменьшается, что должно приводить к уменьшению ре, но одновременное увеличение длины связи оказы- вает противоположное влияние, и априорно нельзя предсказать, бу- дет ли в этом ряду увеличиваться дипольный момент. Эксперимен- тальные измерения показали, что увеличение полярности преобла- дает над удлинением связи: изменение ре составляет от 1,91 (НF) до 0,42 D*(НI). Молекула с полярными связями не обязательно сама будет полярной. Для многоатомных молекул дипольные моменты всех связей (а это векторы) суммируются по правилам сложения векторов: ____________________ * D (или Д) – дебай, единица измерения ре; 1 D = 3,34·10−30 Кл·м. 87

Ковалентная полярная связь.

При взаимодействии атомов, значение электроотрицательностей которых отличаются, но не резко, происходит смещение общей электронной пары к более электроотрицательному атому. Это наиболее распространенный тип химической связи, которой встречается как в неорганических, так и органических соединениях. К ковалентным связям в полной мере относятся и те связи, которые образованы по донорно-акцепторному механизму. образование иона аммония по донорно-акцепторному механизму.

9 Метод валентных связей .

Метод валентных связей впервые был использован в 1927 г. Немецким учеными В. Гейтлером и Ф. Лондоном, которые провели квантово-механический расчет атома водорода. В методе ВС предполагается, что атомы в молекуле сохраняют свою индивидуальность. Электронная пара заселяет орбиталь то одного, то другого атома. Гейтлер и Лондон показали, что при сближении двух атомов водорода с антипаралельными спинами происходит уменьшение энергии системы, что обусловлено увеличением электронной плотности в пространстве между ядрами взаимодействующих атомов. При сближении атомов с параллельными спинами энергия системы возрастает и молекула в этом случае не образуется. Метод ВС базируется на следующих основных положениях: 1) химическая связь между двумя атомами возникает как результат перекрывания АО с образованием электронных пар. 2) атомы, вступающие в химическую связь, обмениваются между собой электронами, которые образуют связывающие пары. В образовании общих электронных пар могут участвовать только не спаренные электроны атомов. Энергия обмена электронами между атомами вносит основной вклад в энергию химической связи. Дополнительный вклад дают кулоновские силы взаимодействия частиц. 3) в соответствии с принципом Паули химическая связь образуется лишь при взаимодействии электронов с антипаралельными спинами. 4) характеристики химической связи определяются типом перекрывания АО

Кривая зависимости энергии связи между молекулами от расстояния

10 Валентность способность атома к образованию химических связей . Мера валентности - число химических связей. Валентные возможности атома определяются числом неспаренных(валентных) электронов на внешнем слое и числом связей, которые могут быть образованы по донорно-акцепторному механизму.Степень окисления - условный заряд атома в молекуле, вычисленный в предположении, что все связи имеют ионный характер . Это означает, что более электроотрицательный атом, смещая к себе одну электронную пару, приобретает заряд -1, две электронных пары - заряд -2. Связь между одинаковыми атомами не дает вклада в степень окисления. Таким образом, связь между атомами С-С соответствует нулевой степени их окисления. В связи C-H углероду как более электроотрицательному атому соответствует заряд -1, а в связи C-O заряд углерода (менее электроотрицательного) равен +1. Степень окисления атома в молекуле подсчитывается как алгебраическая сумма зарядов, которые дают все связи данного атома.Так, в молекуле CH 3 Cl три связи C-H дают суммарный заряд на атоме C, равный -3, а связь C-Cl - заряд +1. Следовательно, степень окисления атома углерода в этом соединении равна:



В возбужденном состоянии валентность атомов увеличивается. Это связано с явлением распаривания и промотирования( перехода на свободную орбиталь)электронов внешнего слоя.

11 .

Химическая связь - межатомное взаимодействие, обусловленное перекрыванием внешних электронных оболочек атомов сопровождающееся понижением общей энергии образовавшейся системы. Химическая связь может образовываться путем предоставления от каждого из атомов по одному или нескольким неспаренным электронам (кратные связи) с образованием электронных пар (ковалентная связь), либо при доминировании одним атомом электронной пары, а другим атомом вакантной электронной орбитали (донорно-акцепторная связь). В образовании химической связи участвуют только электроны внешней электронной оболочки, а внутренние электронные уровни не затрагиваются. В результате, при образовании химической связи у каждого атома образуется заполненная электронная оболочка внешнего электронного уровня, состоящая из двух (дуплет) или восьми (октет) электронов. Химическая связь характеризуется длиной и энергией. Длина химической связи это расстояние между ядрами связанных атомов. Энергия химической связи показывает сколько необходимо затратить энергии на разведение двух атомов, между которыми существует химическая связь, на расстояние, при котором эта химическая связь будет разорван. Основные типы химической связи- ковалентная, ионная, водородная, металлическая.



Насыщаемость связи обеспечивает постоянный состав молекул и определяет понятие валентность. Если в атоме имеется п неспаренных электронов, то этот атом может образовать п химических связей с другими атомами, имеющими по одному неспаренному электрону. Поэтому валентность элемента равна числу неспаренных электронов в атоме или числу образующихся ковалентных связей. Положение о насыщаемости выводится из принципа Паули и означает, что каждый электрон может участвовать в образовании только одной ковалентной связи. Полярность химических связей - характеристика химической связи, показывающая изменение распределения электронной плотности в пространстве вокруг ядер в сравнении с распределением электронной плотности в образующих данную связь нейтральных атомах.

В качестве количественной меры полярности связи используются так называемые эффективные заряды на атомах.

Эффективный заряд определяется как разность между зарядом электронов, находящимся в некоторой области пространства вблизи ядра, и зарядом ядра. Однако эта мера имеет лишь условный и приблизительный смысл, поскольку невозможно однозначно выделить в молекуле область, относящуюся исключительно к отдельному атому, а при нескольких связях - к конкретной связи.

Наличие эффективного заряда может быть указано символами зарядов у атомов (например, Н +δ - Cl −δ , где δ - некоторая доля элементарного заряда).

12 Водородная связь. Данный вид связи лишь условно можно назвать химическими и правильней его относить к межмолекулярным и внутримолекулярным взаимодействиям. Водородная связь возникает между связанным атомом водорода одной молекулы и электроотрицательным атомом другой молекулы. Водородная связь имеет частично электростатическую, а частично донорно-акцепторную природу. Наглядным примером реализации такой связи может служить объединение нескольких молекул воды в кластеры. В молекуле воды атом кислорода смещает на себя электронную плотность приобретая частичный отрицательный заряд, а водород соответственно - частично положительный и может взаимодействовать с неподеленной электронной парой кислорода соседней молекулы. Водородная связь может возникать не только между разными молекулами, но и внутри самой молекулы.. Ван-дер-ваальсово взаимодействие возникает за счет возникновения наведенных дипольных моментов. Такой вид взаимодействия может возникать как между разными молекулами, так и внутри одной молекулы между соседними атомами за счет возникновения дипольного момента у атомов при движении электронов. Ван-дер-ваальсово взаимодействие может быть притягивающим и отталкивающим. Межмолекулярное взаимодействие носит характер притяжения, а внутримолекулярное - отталкивания. Внутримолекулярное ван-дер-ваальсово взаимодействие оказывает существенный вклад в геометрию молекулы. Образование межмолекулярных водородных связей приводит к существенному изменению свойств веществ: повышению вязкости, диэлектрической постоянной, температур плавления и кипения, теплот парообразования и плавления. Например, вода , фтороводород и аммиак имеют аномально высокие температуры кипения и плавления. Под влиянием водородных связей изменяются и химические свойства. Так как многие соединения содержат ковалентные полярные связи Н–О и Н–N, то водородные связи очень распространены. Они проявляются не только в воде, но и в различных кристаллических веществах, полимерах, белках, живых организмах.. Вследствие невысоких значений энергии водородные связи относительно легко разрушаются и вновь возникают. Энергия водородной связи возрастает с увеличением электроотрицательности (ЭО) и уменьшением размеров атомов В. Поэтому наиболее прочные водородные связи возникают, когда в качестве атомов В выступают F, О или N

13-14 В зависимости от расстояния между частицами, составляющими вещество, и от характера и энергии межмолекулярного взаимодействия(ММВ) между ними вещество может находиться в одном из трех агрегатных состояний: в твердом, жидком и газообразном.

В газовом состоянии энергия взаимодействия частиц между собой гораздо меньше их кинетической энергии:

Е ММВ << Е кин .

Поэтому молекулы (атомы) газа не удерживаются вместе, а свободно перемещаются в объеме, значительно превышающем объем самих частиц. Силы межмолекулярного взаимодействия проявляются, когда молекулы подходят друг к другу на достаточно близкое расстояние. Слабое межмолекулярное взаимодействие обусловливает малую плотность газа, стремление к безграничному расширению, способность оказывать давление на стенки сосуда, препятствующие этому стремлению. Молекулы газа находятся в беспорядочном хаотическом движении, и в газе отсутствует какой-либо порядок относительно расположения молекул.

Состояние газа характеризуют: температурой - T, давлением - р и объемом - V. При малых давлениях и высоких температурах все типичные газы ведут себя приблизительно одинаково. Но уже при обычных и, особенно, пониженных температурах и высоких давлениях начинают проявляться индивидуальности газов. Повышение внешнего давления и понижение температуры сближает частицы газа, поэтому межмолекулярное взаимодействие начинает проявляться в большей степени. Для таких газов уже нельзя применять уравнение Менделеева-Клапейрона, а следует применять уравнение Ван-дер-Ваальса:

где a и b - постоянные члены, учитывающие наличие сил притяжения между молекулами и собственный объем молекул, соответственно.При сжатии газов, когда происходит значительное увеличение их плотности, силы ММВ становятся все более ощутимыми, что приводит к созданию условий для образования из молекул различных ассоциатов. Ассоциаты относительно неустойчивые группы молекул. Из природы составляющих ММВ следует, что универсальные силы взаимодействия увеличиваются при увеличении размеров атомов (резко растет поляризуемость, поэтому чем тяжелее однотипные частицы (атомы или молекулы) вещества, тем обычно выше степень их ассоциации при данной температуре, тем при более низких температурах такое вещество переходит из газа в жидкость.

В жидкости силы ММВ соизмеримы с кинетической энергией движения молекул:

Е ММВ » Е кин.

Поэтому жидкость обладает свойством текучести, принимает форму сосуда, в который она помещена. Особенность структуры жидкости заключается в том, что отсутствует дальний, но присутствует ближний порядок расположения молекул . Проявление ближнего порядка заключается в том, что молекулы, расположенные в 1-й сфере окружения данной молекулы, в большей мере задерживаются около нее и, таким образом, определяют некоторую упорядоченность. Однако, в жидкостях может проявляться и еще большая упорядоченность с элементом дальнего порядка. Это происходит в тех случаях, когда универсальные силы ММВ дополняются специфическими силами ММВ.(водородная связь)

Для твердого состояния справедливо соотношение энергий:

Е ММВ > Е кин.

Твердое состояние вещества, в основном, встречается в виде кристаллов. Кристаллы состоят из частиц (атомов, молекул, ионов) вещества, определенным образом ориентированных друг относительно друга. Характер этой ориентации таков, что и достаточно удаленные от выбранной частицы вещества находятся в строго определенном положении и на фиксированном расстоянии. Это свойство называется наличием дальнего порядка в кристаллах. Формы кристаллов могут быть различными.

15 Характерным признаком кристаллического состояния является наличие системы строго упорядоченных частиц , которая называетсякристаллической решеткой . Кристаллическая решетка может быть получена определенным перемещением (трансляцией) в пространстве некоторой наименьшей группировки частиц, называемой элементарной ячейкой .

Особенностями кристаллов являются: высокая степень упорядоченности (наличие ближнего и дальнего порядка), определенная симметрия образуемых ими элементарных ячеек и, как следствие, анизотропия (т.е. зависимость от направления) свойств.

В зависимости от того, какие частицы лежат в узлах кристаллической решетки, различают ионные, атомные, молекулярные и металлические решетки.

Ионная решетка состоит из ионов противоположного знака, чередующихся в узлах. При этом ионы могут быть простыми (Na + , Cl - ..) и сложными (NH 4 + , NO 3 - ...). В связи с тем, что ионная связь - ненасыщенна и ненаправленна, ионная решетка характеризуется высокими координационными числами (к.ч. = 6,8) . Координационое число - количество ближайших частиц, окружающих выбранную . Из-за высокой прочности ионной связи ионные кристаллические решетки прочны, а их кристаллы имеют высокие температуры плавления. Примеры соединений с ионными кристаллическими решетками: NaCl, NH 4 NO 3 и др.

Атомная решетка состоит из атомов, связанных ковалентными связями, например, в алмазе, графите. Координационные числа здесь определяются количеством s-связей центрального атома с окружающими его и не достигают больших значений (часто около 4). Вследствие высокой прочности ковалентной связи такие решетки очень прочные, а вещества характеризуются высокими температурами плавления. Известно, что алмаз - самое твердое естественное вещество.

Молекулярная решетка содержит в узлах молекулы, которые связаны между собой за счет межмолекулярных сил. Молекулярные решетки - малопрочные, а вещества с такими решетками (твердые H 2 , O 2 , N 2 , CO 2 , H 2 O) имеют обычно низкие температуры плавления.

Металлическая решетка может быть условно изображена в виде положительно заряженных ионов, располагающихся в узлах, и электронов, движущихся в междоузлиях. Координационное число здесь достигает больших значений (8-12). Прочность металлической решетки изменяется в широких пределах и сильно зависит от наличия чужеродных примесей. В металлах существует химическая связь, называемая металлической связью . В принципе, металлическая связь - особый вид ковалентной связи. Она возникает в результате “массового” перекрывания облаков внешних (валентных) электронов атомов металла .

16 Одно из наиболее существенных свойств атомов элементов, определяющих, какая связь образуется между ними – ионная или ковалентная, - это Электроотрицательность , т.е. способность атомов в соединении притягивать к себе электроны. Условную количественную оценку электроотрицательности дает шкала относительных электроотрицательностей. В периодах наблюдается общая тенденция роста электроотрицательности элементов, а в группах – их падения. Элементы по электроотрицательностям располагают в ряд, на основании которого можносравнить электроотрицательности элементов, находящихся в разных периодах. Тип химической связи зависит от того, насколько велика разность значенийэлектроотрицательностей соединяющихся атомов элементов. Чем больше отличаются по электроотрицательности атомы элементов, образующих связь,тем химическая связь полярнее. Провести резкую границу между типами
химических связей нельзя. В большинстве соединений тип химической связи оказывается промежуточным; например, сильнополярная ковалентная
химическая связь близка к ионной связи. В зависимости от того, к какому из предельных случаев ближе по своему характеру химическая связь, ее относят либо к ионной, либо к ковалентной полярной связи. Ионная связь является крайним случаем поляризованной ковалентной связи, когда общая электронная пара полностью принадлежит одному из атомов. В таком случае на одном из атомов реализуется полностью положительный заряд, а на другом - полностью отрицательный. Такой тип связи характерен для солей. Например, хлорид натрия - NaCl. Каждый из атомов предоставляет по одному электрону для образования общей электронной пары. Однако Cl полностью смещает к себе образовавшуюся электронную пару и тем самым приобретает полный отрицательный заряд, а Na, не имеющий в таком случае на внешнем электронном уровне ни одного электрона, имеет полный положительный заряд. Важнейшие отличия ионной связи от других типов химической связи заключаются в ненаправленности и ненасыщаемости . Именно поэтому кристаллы, образованные за счёт ионной связи, тяготеют к различным плотнейшим упаковкам соответствующих ионов.

17 Пространственное строение молекул зависит от природы химической связи, возникающей между атомами, а следовательно, структуры их электронной оболочки. Так как в химической связи могут участвовать электроны s -, p -, d - и f - типа от каждого из взаимодействующих атомов, то от типа и числа электронов, а также от возможности образования гибридных связей зависит строение молекул. Часто химические связи образуются за счёт электронов, расположенных на разных атомных орбиталях (например, s – и р – орбитали). Несмотря на это, связи оказываются равноценными и расположены симметрично, что обеспечено гибридизацией атомных орбиталей . Гибридизация орбиталей - это изменение формы некоторых орбиталей при образовании ковалентной связи для достижения более эффективного перекрывания орбиталей.В результате гибридизации появляются новые гибридные орбитали, которые ориентируются в пространстве таким образом, чтобы после их перекрывания с орбиталями других атомов образующиеся электронные пары оказались максимально удалёнными друг от друга. Это сводит к минимуму энергию отталкивания электронов в молекуле.Гибридизация не является реальным процессом. Это понятие введено для описания геометрической структуры молекулы. Форма частиц, возникающих при образовании ковалентных связей, в которых участвуют гибридные атомные орбитали, зависит от числа и типа этих орбиталей. При этом σ – связи создают жёсткий «скелет» частицы:

Орбитали, участвующие в гибридизации. Тип гибридизации Пространственная форма молекулы Примеры

S,P sp – гибридизация Линейная BeCl2

s, p, p sp 2 – гибридизация Треугольная (плоская тригональная) AlCl 3

s, p, p, p sp 3 – гибридизация Тетраэдрическая СH 4

Если электронные облака перекрываются по линии, соединяющий центры атомов, то такую ковалентную связь называют сигма()-связью

Ковалентная связь, образующаяся путем бокового перекрывания р -орбиталей соседних углеродных атомов, называется пи()-связью .

Ковалентные связи углерода

Число групп, связанных с углеродом Тип гибридизации Типы участвующих химических связей Примеры формул соединений
sp 3 Четыре - связи
sp 2 Три - связи и одна - связь
sp Две - связи и две -связи H–C C–H

Энтропия. (S, дж./моль К) функция состояния системы, являющаяся термодинамической мерой ее неупорядоченности. , где W – термодинамическая вероятность- число возможных микросостояний (способов) с помощью которых можно перейти в данное макроскопическое состояние, К – постоянная Больцмана (К = 1,38*10 -23). В изолированной системе самопроизвольные процессы могут протекать только в направлении увеличения энтропии

26

Свободная энергия Гиббса. Направление течения процесса. Анализ уравнения энергии Гиббса. Влияние энтальпийного и энтропийного факторов на направление протекания процессов.

Энергия Гиббса – функция состояния системы, = максимальной ее работе в изобарном изотермическом процессе. Связана с энтальпией и энтропией , где Т абсолютная температура,К. Энтальпия – функция состояния равная внутренней энергии системы + работа расширения. . Энтропия - функция состояния системы, являющаяся термодинамической мерой ее неупорядоченности. В изолированной системе самопроизвольные процессы могут протекать только в направлении увеличения энтропии. Для процессов, протекающих при постоянной температуре и давлениидавлении энергия Гиббса . Общим критерием самопроизвольного протекания химического процесса является уменьшение энергии Гиббса анализ показывает, что для эндотермических реакций сопровождающихся увеличением беспорядка в системе при высоких температурах. В случае экзотермических реакций сопровождающихся уменьшением беспорядка при низких температурах. Если ,то процесс в прямом направлении невозможен, идет обратная реакция.

Для , как функции состояния .

27

При процесс идет самопроизвольно в прямом направление, если потенциал уменьшается следовательно константа равновесия больше 1. Концентрация продуктов > концентрации исходных веществ. Если наоборот, то реакция практически не шла. При повышении температуры равновесие сместиться в сторону эндотермической реакции, при понижении в сторону экзотермической. При увеличении давления равновесие смещается в направлении реакции, идущей с уменьшением объема газообразных веществ, при понижении давления в сторону реакции идущей с увеличением объема. При увеличении концентрации исходных веществ равновесие смещается в сторону прямой реакции.

28

Растворы – однородные системы, состоящие из двух и более компонентов и продуктов их взаимодействия. Растворы бывают Насыщенный раствор находится в равновесии с твердой фазой растворенного вещества. Ненасыщенный – концентрация раствора меньше концентрации насыщенного раствора. Перенасыщенный – содержит вещества больше чем надо для насыщения раствора (неустойчивая система). Образование раствора происходит самопроизвольно. Величина уменьшения термодинамического потенциала зависит от состава раствора. Растворение – химические взаимодействие между молекулами растворителя и растворяемого вещества. Концентрация раствора – количество растворенного вещества, содержащиеся в определенном количестве раствора. Массовая доля – отношение массы вещества к массе раствора. в долях единицы. Молярная доля – отношение количества вещества компонента системы к сумме количеств веществ компонентов Моляльная концентрация – отношение количества вещества растворенного соединения к массе растворителя

Молярная концентрация – отношение количества вещества растворенного соединения к объему раствора. . Молярная концентрация эквивалента – отношение количества вещества эквивалента растворенного соединения к объему раствора. . В случае когда реагируют в равных объемах С 1/ Z *1 V 1 = С 1/ Z *2 V 2

Идеальный раствор. Законы Рауля. Понижение давления насыщенного пара, понижение температуры замерзания, повышение температуры кипения растворов неэлектролитов.

Растворы - это однородные системы, состоящие из двух и более компонентов и продуктов их взаимодействии. Давлениемнасыщенного пара жидкости наз. давление, которое установилось над жидкостью, когда скорость испарения жидкости = скорости конденсации пара в жидкость. 1 закон Рауля. Относительное понижение давления пара растворителя над раствором = мольной доле растворенного вещества Растворы подчиняющиеся этому закону называются идеальными . Растворы всегда кипят при более высокой температуре, чем чистый растворитель, при увеличении концентрации растворенного вещества повышается температура кипения. 2 закон Рауля. Эбулиоскопический. Повышение температуры кипения раствора неэлектролита пропорционально моляльной концентрации растворенного вещества. , Е эбуллиоскопическая константа. Постоянна для каждого растворителя и не зависит от того, какой неэлектролит растворен. Е= повышению температуры кипения, вызываемому 1 молем вещества, растворенным в 1000 г. растворителя. Криоскопический. Понижение температуры замерзания раствора неэлектролита пропорционально мольльной концентрации растворенного вещества. , К криоскопическая константа постоянна для каждого растворителя и = понижению температуры замерзания растворов в которых на 1000 г. растворителя приходится 1 моль растворенного неэлектролита.

Общими являются свойства растворов, которые зависят от концентрации и практически не зависят от природы растворенных веществ. Они также называются коллигативными. Такие свойства могут появлятся в полной мере в идеальных растворах. Идеальным называют раствор, в котором не происходят химические реакции между компонентами, а силы межмолекулярного взаимодействия между компонентами одинаковы. Соответственно, образование этих растворов не сопровождается тепловым эффектом (/\Н=0) и каждый компонент ведет себя в растворе независимо от других компонентов. К идеальным растворам относятся лишь очень разбавленные растворы, т.е. растворы с очень низкой концентрацией растворенного вещества. К общим свойствам растворов относится понижение давления насыщенного пара растворителя над раствором и температуры замерзания, повышение температуры кипения и осмотическое давление. Эти свойства проявляются в случае растворов нелетучих растворенных веществ, т.е. веществ, давлением паров которых можно пренебречь

Если процесссольватации протекает до стадии АВ(n+m)Sß à Ap+nS+Bq-mS, то система является раствором электролита, т.е имеет место электролитическая диссоциация с образованием ионов Уравнение электролитической реакции можно записать, опустив промежуточные стадии, указав лишь начальные и конечные продукты реакции. АВ(n+m)Sß à Ap+nS+Bq-mS Например, процесс диссоциации уксусной кислоты в воде протекает следующим образом: CH3COOH+(n+m)H2OàßCH3COOH- * nH2O+H+*mH2O. При растворении ионного соединения процесс сольвации, в результате которого происходит электролитическая диссоциация, может протекать практически необратимо: Ap+ Bq-+(n+m)Sà Ap+nS+ Bq-mS.

Однако часто в подобных уравнениях опускают молекулы растворителя (n+m)S, записывая х в таком виде Ap+ Bq-à Ap++ Bq-/ Электролитическая диссоциация это распад молекулы с полярным или ионным типом связи под действием полярных молекул растворителя. Сильные электролиты это электролиты степень диссоциации которых составляет (100-30%) HCL KOH LiOH NaOH соли. Слабые электролиты альфа <0,3% HF HiS NH4OH H2CO3

Сильные электролиты. Активность. Ионная сила растворов.

Такие соединения как правило, диссоциируют нацело. Классификация. Кислота электролит диссоциирующий в растворе с образованием катионов. Основания электролит диссоциирующий в растворе с образованиемгидроксид-онионов. Соль электролит диссоциирующий в растворе с образованиемкатионов металла и анионов кислотного осадка. Активность – эффективная концентрация вещества в растворе в соответствии с которой оно участвует в различных процессах а=f/С, где f - коэффициент активности, С – концентрация. Ионная сила . , .

В растворах некоторых электролитов диссоциирует лишь часть молекул. Для количественной характеристики электролитической диссоциации было введено понятие степени диссоциации. Отношение числа молекул, диссоциированных на ионы, к общему числу молекул растворённого электролита называется степенью диссоциации α.

Электролиты, степень диссоциации которых в растворах меньше единицы и уменьшается с ростом концентрации, называют слабыми электролитами. К ним относят воду, ряд кислот, основания p-, d-, f-элементов. В растворах слабых электролитов процесс диссоциации протекает обратимо и, следовательно, к нему может быть применен закон действующих масс. Так, для процесса диссоциации кислоты HA ↔ H + A константа равновесия Кс равна Кс = Кд = ([H][A])/.

Константа равновесия для процесса диссоциации называется константой диссоциации Кд. Например, константа диссоциации уксусной кислоты CH3COOH равна

Кд = ([H])/. C повышением температуры константа диссоциации обычно уменьшается, что в соответствие с принципов Ле-Шателье свидетельствует об экзотермическим характере реакции. Константа диссоциации указывает на прочность молекул в данном растворе. Чем меньше константа диссоциации в данном растворителе, тем слабее диссоциирует электролит и тем, следовательно, устойчивее его молекулы. Степень диссоциации α изменяется с концентрацией раствора. Рассмотрим зависимость степень диссоциации от концентрации слабого электролита на примере уксусной кислоты.

CH3COOH ↔ CH3COO + H. Принимая исходную концентрацию кислоты равной c, а степень диссоциации α, получаем, что концентрация части кислоты, которая диссоциирована, будет равна αc. Концентрация кислоты, оставшейся в недиссоциированном состоянии, будет равна c – αс = c(1 – α). Подставив значения равновесных концентраций ионов и кислоты в уравнение константы диссоциации, получим: Кд = (α²c²)/c(1 – α) = (α²c)/(1-α) = α²/(1-α)V, где V = 1/c. Это уравнение было получено Оствальдом и называется законом Оствальда. Если α << 1, то уравнение упрощается: Кд ≈ α²c и α≈√Кд/c. Это уравнение называется законом разбавления Оствальда. Из него следует, что степень диссоциации уменьшается с увеличением концентрации слабого электролита. Изотонический коэффициент характерезует отклонение от законов идеальных растворов вследствие электролитической диссоциации электролитов.

Диссоциация воды

Вода представляет собой слабый электролит, диссоциирующий в соответствии с уравнением

Константа диссоциации воды при 25 °C составляет

Считая, что в большинстве растворов вода находится в молекулярном виде (концентрация ионов H + и OH − мала), и учитывая, что молярная масса воды составляет 18,0153 г/моль, а плотность при температуре 25 °C - 997,07 г/л, чистой воде соответствует концентрация = 55,346 моль/л. Поэтому предыдущее уравнение можно переписать в виде

Эта величина называется ионным произведением воды. Так как для чистой воды = , можно записать

Водородный показатель воды, таким образом, равен

Подавляющее большинство веществ обладает ограниченной растворимостью в воде и других растворителях. Поэтому на практике часто приходится встречаться с системами, в которых в состоянии равновесия находят осадок и насыщенный раствор электролита. Вследствие динамического характера равновесия скорость процесса растворения осадка будет совпадать со скоростью обратного процесса кристаллизации.

AnBm(т) ↔ nAm+ + mBn-.

Произведение активностей ионов электролита, содержащихся в его насыщенном растворе при данной температуре, есть величина постоянная. Эту величину называют произведением растворимости электролита и обозначают ПР. как константа равновесия, произведение растворимости зависит от природы растворённого вещества и растворителя, а также от температуры и не зависит от активностей ионов в растворе.

Связь между ПР и растворимостью cp выразиться уравнением:

ПР=(nCрgАm+)n(mCрgBn-)m

Гидролизом солей называют реакции обмена между водой и растворенными в ней солями. В результате протекания процесса гидролиза соли растворе появляется некоторое избыточное количество ионов H+ и OH¯, сообщающее раствору кислотные или щелочные свойства. Таким образом, процесс гидролиза соли во многом обратен процессу нейтрализации, т.е. процессу взаимодействия кислот с основаниями. Гидролизу не подвергаются соли, образованные сильными кислотами и основаниями, например KCl.

Гальванический элемент Даниэля – Якоби состоит из медной пластины, погружённой в раствор CuSO4, и цинковой пластины, погружённой в раствор ZnSO4. Для предотвращения прямого взаимодействия окислителя и восстановителя электроды отделены друг от друга пористой перегородкой. На поверхности цинковой пластины возникает двойной электрический слой и устанавливается равновесие Zn ↔ Zn2+ + 2e¯. В результате протекания этого процесса возникает электродный потенциал цинка. На поверхности медной пластины также возникает двойной электрический слой и устанавливается равновесие Cu ↔ Cu2+ + 2e¯ поэтому возникает электродный потенциал меди. Потенциал цинкового электрода имеет более отрицательное значение, чем потенциал медного электрода, поэтому при замыкании внешней цепи, т.е. при соединении цинка с медью металлическим проводником электроны будут переходить от цинка к меди. В результате перехода электронов от цинка к меди равновесие на цинковом электроде см

← Вернуться

×
Вступай в сообщество «semeinyi31.ru»!
ВКонтакте:
Я уже подписан на сообщество «semeinyi31.ru»